
ReactOS is (not) Windows

Windows internals and why ReactOS 
couldn’t just use a Linux kernel



ReactOS is (not) Windows

• ReactOS is Windows
– Runs Windows applications

– Runs Windows drivers

– Looks like Windows

• ReactOS is not Windows
– ReactOS is a free, open source project

– ReactOS reuses open source code from other 
projects

– You can make “your own Windows”



Who am I?

• Michele “KJK::Hyperion” C. from Milano

– Senior ReactOS developer (since 2001)

– hackbunny@reactos.org



WINDOWS ARCHITECTURE
What does Windows mean



ReactOS is Windows

• ReactOS has the same identical architecture as 
Windows, for maximum compatibility
– Windows drivers require a Windows kernel

– Many applications (firewalls, antivirus, media 
players, PDA sync software, etc.) come with 
special drivers

• Windows architecture is quite different from 
Linux and not as well known

• Let’s start from the basics…



Operating system architecture

• Abstraction of CPU time and context (processes, 
threads, signals, etc.)

• Abstraction of memory (virtual memory, paging, 
stacks, heaps, etc.)

• Separation between system and applications through 
CPU’s built-in memory protection (user mode vs kernel 
mode)

• Separation between hardware and applications
through CPU’s built-in I/O privilege mechanisms

• Mechanisms to bypass OS protection features in a 
controlled, secure way (system calls, security 
subsystem, etc.)
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Linux architecture

• Monolithic kernel. No kernel ABI
• UNIX process management and security model
• Native networking support

– Sockets, pipes
– select, poll, etc.

• Filesystem abstraction (VFS)
• UNIX API (libc) on top of a small UNIX-like system call and signals 

interface
• Other APIs (audio, application setup, desktop environment 

integration, cryptography, etc.) are de facto standards from third 
parties
– The graphic subsystem (X server) is in a category of its own. The kernel 

has “backdoors” to let the X server talk directly to the hardware, to 
keep the complexity of video drivers outside of the sensitive 
environment of kernel mode



Linux architecture
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Windows (NT) architecture

• Monolithic kernel. Relatively stable kernel ABI
• Kernel design is almost identical to DEC RSX-11 and VMS, with DOS, OS/2 

and Windows 95 influences
– RSX-11, VMS and Windows NT were designed by the same engineer (Dave 

Cutler)
– Windows NT was initially developed as a new kernel for OS/2

• No device abstraction in the kernel itself. Abstraction is provided by 
standard system drivers (class or port drivers)

• No network support in the kernel itself. select/poll is not a system call, 
but an ioctl to the “socket filesystem”
– Sockets and pipes are provided by two special filesystems
– Further user-mode layer of abstraction sockets: Winsock used to be a third-

party component (e.g. Trumpet Winsock)

• Native graphics and windowing subsystems (running in kernel mode)
with a standard API

• Rich, high-level APIs of all sorts (cryptography, desktop environment, etc.)



Unique Windows architecture features

• Chipset devices (timer, interrupt controller, power management, 
buses, firmware, etc.) are abstracted by a kernel component called 
Hardware Abstraction Layer (HAL)
– ACPI vs non-ACPI is just a different HAL
– The ReactOS port to the XBox was a regular x86 ReactOS with an XBox-

specific HAL

• No signals; standard exception model instead (“SEH”, shared with 
VMS, OS/2 and Tru64)

• Reverse system calls (callbacks): windowing and graphics 
subsystem can call back into user mode
– The user-mode and the kernel-mode parts of the subsystem used to 

run in shared memory in their original implementation (Windows 95)
– Too unsafe for Windows NT; emulates a secure but compatible shared 

memory environment with some “tricks” (like callbacks)



Windows architecture
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WINE AND REACTOS
ReactOS is (not) Wine



ReactOS is (not) Wine

• “If ReactOS is just a kernel for Wine…

– … what do we need it for?”

– … why isn’t it finished yet?”

• As always, things are more complicated than 
they appear…



Wine and ReactOS

• ReactOS has a lot in common with Wine, and 
we can share a lot of code with them…

– Enough common goals:

• Installing Windows applications

• Running Windows applications

• … but…

– Too many different goals

• Running on Linux vs running on hardware

• Whether to support Windows drivers



Wine on Linux

• Windows applications can only be loaded by a Wine 
utility (the Wine loader)

• Windows applications and DLLs are dynamically linked 
to Wine reimplementations of Windows system DLLs
– Most Wine DLLs are regular Windows DLLs compiled as 

Linux code

– Some are internally Linux libraries, depending on other 
Linux libraries. Linux libraries are transparent to Windows 
applications – they act as system calls in all respects

• A service process (Wine Server) replaces the Windows 
kernel for the management of shared resources



Wine on Linux
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Wine on Windows ReactOS

• Windows applications are loaded directly by the 
Windows ReactOS kernel

• Windows applications and DLLs are dynamically linked 
to Wine and ReactOS reimplementations of Windows 
system DLLs
– We can only use Wine DLLs that don’t depend on Linux 

libraries
– This includes important libraries like user32 & gdi32 

(windowing and graphics APIs, depending on X server on 
Linux), wininet (HTTP and FTP client, depending on 
OpenSSL on Linux for HTTPS), etc.

• ReactOS reimplements a true Windows kernel
– Can support applications and drivers



User mode
Kernel mode

Wine on ReactOS

Kernel

Executive

HAL

ntdll

kernel32
gdi32user32

System libraries

Services

DirectX

Windows drivers

win32k

Windows applications



Wine and ReactOS: summary

• Wine was designed to run Windows applications on Linux. 
Linux-specific dependencies are:
– … invisible to applications
– … an integral part of Wine design

• ReactOS was designed to be Windows:
– Needs to take as much as possible from Wine
– Needs to reimplement what Wine implements in a Linux-

dependant way
– Implementation cannot just be “functionally equivalent”: must 

be “binary-compatible”, because in Windows everything is an 
API

– Not a lot of code can be reused from other projects

• ReactOS is complex and irreplaceable



REACTOS ARCHITECTURE
ReactOS is (not) Windows



ReactOS is not Windows

• All the parts of Windows that aren’t in Wine 
must be reimplemented

• This means the kernel and all kernel mode 
subsystems (graphics, sound, USB…). It sounds 
hard and it is

• Who was stupid brave enough to take this 
task, and did they succeed?



The ReactOS crew

• A truly “international” project
– Founded by Jason Filby from South Africa
– Most early developers and the first ReactOS foundation from the USA
– Today, a Russian foundation and project coordinator, most developers 

from Germany and the USA, and a community spanning the globe

• No formal training
– Almost all developers learned Windows internals while working on 

ReactOS
– Sadly for the project (but happily for them), the best developers are 

“snagged” by Microsoft and other large companies

• Very little information available to the public
– “Inside Microsoft Windows” is the reference on Windows design and 

internals
– … but it’s not enough information for ReactOS development



The ReactOS kernel

• Many developers alternated developing the ReactOS kernel and 
subsystem, with mixed results

• Good quality:
– Scheduler, HAL, process and thread manager (thanks Alex Ionescu!)

• Fair quality:
– I/O subsystem, configuration manager (registry), security manager

• Security manager is good enough to support a prototype implementation of 
Mandatory Access Control (MAC) I did for my BS thesis

• Poor quality:
– Memory manager, cache manager, filesystem support library: three 

tightly coupled components that have been our “white whale” since 
the beginning

• Non-existing:
– Power management

• Nevertheless, the ReactOS kernel is…



The ReactOS kernel

• … compatible enough!



The windowing subsystem (USER)

• Another long-time “white whale” sub-project
• Many developers tried and failed

– Three separate rewrites, one still ongoing

• The original implementation is a very good hack…
– Windowing subsystem comes all the way back from Windows 1.0
– The port to Windows NT introduced memory protection, but the API 

implies shared memory
– Several dedicated hacks to simulate shared memory safely – user32.dll

is not just a library, but the user-mode half of the windowing system

• … but a really poor design
– Impossible to give an good, high-level description of the architecture
– Nobody documents all of it, neither officially nor unofficially



The graphics subsystem (GDI)

• Tightly coupled with the windowing subsystem

• Much simpler, better design
– gdi32.dll is a partial user-mode reimplementation of the 

subsystem, to run user-mode display drivers (i.e. printer 
drivers)

– Drawing algorithms are well isolated in a simple API
• All our font drawing code comes from FreeType (a third-party, 

open source project)

• Efforts concentrate on the more complex (and visible) 
windowing subsystem, however

• DirectX graphics is a whole another matter entirely…



Networking

• The networking stack in Windows is outside the kernel
• … but the stack is split into independent layers, with many 

documented APIs between them:
– Winsock
– TDI
– NDIS

• Each part has to be implemented in a Windows-compatible 
way

• … but many parts are complex enough inside to make it 
possible to wrap a large third-party implementation in a 
Windows-compatible “shell”
– Our TCP/IP driver is almost 100% FreeBSD code

• “Good enough” quality



REACTOS PRESENT AND FUTURE
What are we working on, what we will work on



Driver support

• Stand-alone drivers run well enough
– Video drivers

• Complex abstraction layers need more work
– USB

– Sound

– Network card drivers (except PCI Ethernet cards)

• Filesystem drivers (including network filesystems) 
require a lot of work on the kernel “big three” 
(cache manager, memory manager, filesystem 
support)



USB

• We used to use a port of the Linux Cromwell stack, but 
it “bit-rotted”
– Used in the XBox port (XBox only supports USB input)

• We currently use a USB compatibility layer for 
Windows NT 4
– “Good enough” for light use (USB keyboards, mice, etc.)

– Windows NT 4 lacked kernel features to properly support 
USB, so the compatibility layer is very different from “real” 
USB support

• Our I/O subsystem is not ready yet for full, “real” USB 
support



Audio subsystem

• It works!

– ReactOS can play audio

– The audio subsystem prototype successfully 
played several hours of streamed MP3 audio 
through Winamp

• … but it’s very incomplete

• Hard to find people with experience in 
Windows audio



Kernel subsystems

• Cache manager rewrite is in progress

• The ARM port resulted in a large cleanup of 
the memory manager

• Overall quality improvements



Development tools

• We don’t support the Windows kernel debugger… yet

• We only support compilation with gcc, which doesn’t 
play nice with Windows tools
– We contribute to the development of the Windows port of 

gcc (MinGW) because we are probably its largest user (and 
we find a lot of bugs in it!)

– MinGW was never expected to compile a kernel!

– I’m working on a build environment and source code 
clean-up to support compilation with Microsoft Visual C++
• More accessible to new developers

• Better integration with Windows development tools



CLOSING REMARKS
What did we learn today?



Summary

• Windows is a pretty normal operating system, 
after all!

• ReactOS…

– … is (not) Windows: it’s a 100% open source 
reimplementation of Windows

– … is not Linux: it runs Windows drivers

– … is not Wine: it uses Wine, but Wine is only part of it

• ReactOS is complex and unique

• ReactOS is a lot of work



Any questions?
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