
ReactOS is (not) Windows

Windows internals and why ReactOS 
couldn’t just use a Linux kernel



ReactOS is (not) Windows

• ReactOS is Windows
– Runs Windows applications

– Runs Windows drivers

– Looks like Windows

• ReactOS is not Windows
– ReactOS is a free, open source project

– ReactOS reuses open source code from other 
projects

– You can make “your own Windows”



Who am I?

• Michele “KJK::Hyperion” C. from Milano

– Senior ReactOS developer (since 2001)

– hackbunny@reactos.org



WINDOWS ARCHITECTURE
What does Windows mean



ReactOS is Windows

• ReactOS has the same identical architecture as 
Windows, for maximum compatibility
– Windows drivers require a Windows kernel

– Many applications (firewalls, antivirus, media 
players, PDA sync software, etc.) come with 
special drivers

• Windows architecture is quite different from 
Linux and not as well known

• Let’s start from the basics…



Operating system architecture

• Abstraction of CPU time and context (processes, 
threads, signals, etc.)

• Abstraction of memory (virtual memory, paging, 
stacks, heaps, etc.)

• Separation between system and applications through 
CPU’s built-in memory protection (user mode vs kernel 
mode)

• Separation between hardware and applications
through CPU’s built-in I/O privilege mechanisms

• Mechanisms to bypass OS protection features in a 
controlled, secure way (system calls, security 
subsystem, etc.)



Operating system architecture

Kernel

Applications

V
ir

tu
al

P
h

ys
ic

al

User mode

Kernel mode

User

Hardware



Linux architecture

• Monolithic kernel. No kernel ABI
• UNIX process management and security model
• Native networking support

– Sockets, pipes
– select, poll, etc.

• Filesystem abstraction (VFS)
• UNIX API (libc) on top of a small UNIX-like system call and signals 

interface
• Other APIs (audio, application setup, desktop environment 

integration, cryptography, etc.) are de facto standards from third 
parties
– The graphic subsystem (X server) is in a category of its own. The kernel 

has “backdoors” to let the X server talk directly to the hardware, to 
keep the complexity of video drivers outside of the sensitive 
environment of kernel mode



Linux architecture

System Call Interface

VFS PM MM

Arch Device drivers

Network 
stack

CPU MMUDisk Devices

libc

Application libraries

Applications X server

Video card

Kernel

System calls Signals Direct I/O

User mode
Kernel mode

Virtual
Physical



Windows (NT) architecture

• Monolithic kernel. Relatively stable kernel ABI
• Kernel design is almost identical to DEC RSX-11 and VMS, with DOS, OS/2 

and Windows 95 influences
– RSX-11, VMS and Windows NT were designed by the same engineer (Dave 

Cutler)
– Windows NT was initially developed as a new kernel for OS/2

• No device abstraction in the kernel itself. Abstraction is provided by 
standard system drivers (class or port drivers)

• No network support in the kernel itself. select/poll is not a system call, 
but an ioctl to the “socket filesystem”
– Sockets and pipes are provided by two special filesystems
– Further user-mode layer of abstraction sockets: Winsock used to be a third-

party component (e.g. Trumpet Winsock)

• Native graphics and windowing subsystems (running in kernel mode)
with a standard API

• Rich, high-level APIs of all sorts (cryptography, desktop environment, etc.)



Unique Windows architecture features

• Chipset devices (timer, interrupt controller, power management, 
buses, firmware, etc.) are abstracted by a kernel component called 
Hardware Abstraction Layer (HAL)
– ACPI vs non-ACPI is just a different HAL
– The ReactOS port to the XBox was a regular x86 ReactOS with an XBox-

specific HAL

• No signals; standard exception model instead (“SEH”, shared with 
VMS, OS/2 and Tru64)

• Reverse system calls (callbacks): windowing and graphics 
subsystem can call back into user mode
– The user-mode and the kernel-mode parts of the subsystem used to 

run in shared memory in their original implementation (Windows 95)
– Too unsafe for Windows NT; emulates a secure but compatible shared 

memory environment with some “tricks” (like callbacks)



Windows architecture

Kernel

Executive

HAL

ntdll

kernel32
gdi32user32

System libraries

Services

DirectX

Device drivers

win32k

Applications, application libraries

Chipset devices CPU, MMU Devices



WINE AND REACTOS
ReactOS is (not) Wine



ReactOS is (not) Wine

• “If ReactOS is just a kernel for Wine…

– … what do we need it for?”

– … why isn’t it finished yet?”

• As always, things are more complicated than 
they appear…



Wine and ReactOS

• ReactOS has a lot in common with Wine, and 
we can share a lot of code with them…

– Enough common goals:

• Installing Windows applications

• Running Windows applications

• … but…

– Too many different goals

• Running on Linux vs running on hardware

• Whether to support Windows drivers



Wine on Linux

• Windows applications can only be loaded by a Wine 
utility (the Wine loader)

• Windows applications and DLLs are dynamically linked 
to Wine reimplementations of Windows system DLLs
– Most Wine DLLs are regular Windows DLLs compiled as 

Linux code

– Some are internally Linux libraries, depending on other 
Linux libraries. Linux libraries are transparent to Windows 
applications – they act as system calls in all respects

• A service process (Wine Server) replaces the Windows 
kernel for the management of shared resources



Wine on Linux

Linux kernel

GNU libc

Wine libraries

User mode
Kernel mode

Linux libraries

Wine loader

X server

Wine server

Windows applications

Wine services



Wine on Windows ReactOS

• Windows applications are loaded directly by the 
Windows ReactOS kernel

• Windows applications and DLLs are dynamically linked 
to Wine and ReactOS reimplementations of Windows 
system DLLs
– We can only use Wine DLLs that don’t depend on Linux 

libraries
– This includes important libraries like user32 & gdi32 

(windowing and graphics APIs, depending on X server on 
Linux), wininet (HTTP and FTP client, depending on 
OpenSSL on Linux for HTTPS), etc.

• ReactOS reimplements a true Windows kernel
– Can support applications and drivers



User mode
Kernel mode

Wine on ReactOS

Kernel

Executive

HAL

ntdll

kernel32
gdi32user32

System libraries

Services

DirectX

Windows drivers

win32k

Windows applications



Wine and ReactOS: summary

• Wine was designed to run Windows applications on Linux. 
Linux-specific dependencies are:
– … invisible to applications
– … an integral part of Wine design

• ReactOS was designed to be Windows:
– Needs to take as much as possible from Wine
– Needs to reimplement what Wine implements in a Linux-

dependant way
– Implementation cannot just be “functionally equivalent”: must 

be “binary-compatible”, because in Windows everything is an 
API

– Not a lot of code can be reused from other projects

• ReactOS is complex and irreplaceable



REACTOS ARCHITECTURE
ReactOS is (not) Windows



ReactOS is not Windows

• All the parts of Windows that aren’t in Wine 
must be reimplemented

• This means the kernel and all kernel mode 
subsystems (graphics, sound, USB…). It sounds 
hard and it is

• Who was stupid brave enough to take this 
task, and did they succeed?



The ReactOS crew

• A truly “international” project
– Founded by Jason Filby from South Africa
– Most early developers and the first ReactOS foundation from the USA
– Today, a Russian foundation and project coordinator, most developers 

from Germany and the USA, and a community spanning the globe

• No formal training
– Almost all developers learned Windows internals while working on 

ReactOS
– Sadly for the project (but happily for them), the best developers are 

“snagged” by Microsoft and other large companies

• Very little information available to the public
– “Inside Microsoft Windows” is the reference on Windows design and 

internals
– … but it’s not enough information for ReactOS development



The ReactOS kernel

• Many developers alternated developing the ReactOS kernel and 
subsystem, with mixed results

• Good quality:
– Scheduler, HAL, process and thread manager (thanks Alex Ionescu!)

• Fair quality:
– I/O subsystem, configuration manager (registry), security manager

• Security manager is good enough to support a prototype implementation of 
Mandatory Access Control (MAC) I did for my BS thesis

• Poor quality:
– Memory manager, cache manager, filesystem support library: three 

tightly coupled components that have been our “white whale” since 
the beginning

• Non-existing:
– Power management

• Nevertheless, the ReactOS kernel is…



The ReactOS kernel

• … compatible enough!



The windowing subsystem (USER)

• Another long-time “white whale” sub-project
• Many developers tried and failed

– Three separate rewrites, one still ongoing

• The original implementation is a very good hack…
– Windowing subsystem comes all the way back from Windows 1.0
– The port to Windows NT introduced memory protection, but the API 

implies shared memory
– Several dedicated hacks to simulate shared memory safely – user32.dll

is not just a library, but the user-mode half of the windowing system

• … but a really poor design
– Impossible to give an good, high-level description of the architecture
– Nobody documents all of it, neither officially nor unofficially



The graphics subsystem (GDI)

• Tightly coupled with the windowing subsystem

• Much simpler, better design
– gdi32.dll is a partial user-mode reimplementation of the 

subsystem, to run user-mode display drivers (i.e. printer 
drivers)

– Drawing algorithms are well isolated in a simple API
• All our font drawing code comes from FreeType (a third-party, 

open source project)

• Efforts concentrate on the more complex (and visible) 
windowing subsystem, however

• DirectX graphics is a whole another matter entirely…



Networking

• The networking stack in Windows is outside the kernel
• … but the stack is split into independent layers, with many 

documented APIs between them:
– Winsock
– TDI
– NDIS

• Each part has to be implemented in a Windows-compatible 
way

• … but many parts are complex enough inside to make it 
possible to wrap a large third-party implementation in a 
Windows-compatible “shell”
– Our TCP/IP driver is almost 100% FreeBSD code

• “Good enough” quality



REACTOS PRESENT AND FUTURE
What are we working on, what we will work on



Driver support

• Stand-alone drivers run well enough
– Video drivers

• Complex abstraction layers need more work
– USB

– Sound

– Network card drivers (except PCI Ethernet cards)

• Filesystem drivers (including network filesystems) 
require a lot of work on the kernel “big three” 
(cache manager, memory manager, filesystem 
support)



USB

• We used to use a port of the Linux Cromwell stack, but 
it “bit-rotted”
– Used in the XBox port (XBox only supports USB input)

• We currently use a USB compatibility layer for 
Windows NT 4
– “Good enough” for light use (USB keyboards, mice, etc.)

– Windows NT 4 lacked kernel features to properly support 
USB, so the compatibility layer is very different from “real” 
USB support

• Our I/O subsystem is not ready yet for full, “real” USB 
support



Audio subsystem

• It works!

– ReactOS can play audio

– The audio subsystem prototype successfully 
played several hours of streamed MP3 audio 
through Winamp

• … but it’s very incomplete

• Hard to find people with experience in 
Windows audio



Kernel subsystems

• Cache manager rewrite is in progress

• The ARM port resulted in a large cleanup of 
the memory manager

• Overall quality improvements



Development tools

• We don’t support the Windows kernel debugger… yet

• We only support compilation with gcc, which doesn’t 
play nice with Windows tools
– We contribute to the development of the Windows port of 

gcc (MinGW) because we are probably its largest user (and 
we find a lot of bugs in it!)

– MinGW was never expected to compile a kernel!

– I’m working on a build environment and source code 
clean-up to support compilation with Microsoft Visual C++
• More accessible to new developers

• Better integration with Windows development tools



CLOSING REMARKS
What did we learn today?



Summary

• Windows is a pretty normal operating system, 
after all!

• ReactOS…

– … is (not) Windows: it’s a 100% open source 
reimplementation of Windows

– … is not Linux: it runs Windows drivers

– … is not Wine: it uses Wine, but Wine is only part of it

• ReactOS is complex and unique

• ReactOS is a lot of work



Any questions?

Brought to you by


